Órgano oficial de Instituto Panvascular de Occidente, S.C.
Neurociencia del Sueño: Revisión Narrativa
PDF Artículo de Revisión

Palabras clave

Neurociencias
Sueño
Revisión Narrativa

Categorías

Cómo citar

1.
Neurociencia del Sueño: Revisión Narrativa. Rev Med Clin [Internet]. 2021 May 11 [cited 2024 Oct. 6];5(2):e11052105016. Available from: https://medicinaclinica.org/index.php/rmc/article/view/334

Resumen

El proceso de sueño-vigilia, representa una de las necesidades básicas de los seres humanos, al igual que alimentarse y reproducirse; sin embargo, los cambios socioculturales han modificado de cierta manera nuestros hábitos de sueño, desencadenando algunos trastornos del dormir. Los avances en las investigaciones del ciclo sueño-vigilia, han facilitado comprender las diferentes alteraciones que se desarrollan por una inadecuada higiene de sueño en las personas. Cabe señalar que muchas de las investigaciones al respecto, se basan en los estudios de mamíferos inferiores, bajo el conocimiento de que el ciclo sueño-vigilia es similar en los mamíferos, con ello se transfieren estos conocimientos a los seres humanos con sus limitaciones. Comprender la neurofisiología básica del dormir, no facilita entender los diferentes trastornos del sueño que se manifiestan en las personas que acuden a nuestra consulta médica.

PDF Artículo de Revisión

Referencias

Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci. 2010;11(2):114-126. doi:10.1038/nrn2762

Diekelmann S. Sleep for cognitive enhancement. Front Syst Neurosci. 2014;8. doi:10.3389/fnsys.2014.00046

Gaultney JF. The Prevalence of Sleep Disorders in College Students: Impact on Academic Performance. J Am Coll Health. 2010;59(2):91-97. doi:10.1080/07448481.2010.483708

Carrillo-Mora P, Ramírez-Peris J, Magaña-Vázquez K. Neurobiología del sueño y su importancia: antología para el estudiante universitario. Rev Fac Med (Méx). 2013;56(4):11.

Carley DW, Farabi SS. Physiology of Sleep. Diabetes Spectr. 2016;29(1):5-9. doi:10.2337/diaspect.29.1.5

Saper CB, Cano G, Scammell TE. Homeostatic, circadian, and emotional regulation of sleep. J Comp Neurol. 2005;493(1):92-98. doi:10.1002/cne.20770

Fuller PM, Gooley JJ, Saper CB. Neurobiology of the Sleep-Wake Cycle: Sleep Architecture, Circadian Regulation, and Regulatory Feedback. J Biol Rhythms. 2006;21(6):482-493. doi:10.1177/0748730406294627

Schwartz JRL, Roth T. Neurophysiology of sleep and wakefulness: basic science and clinical implications. Curr Neuropharmacol. 2008;6(4):367-378. doi:10.2174/157015908787386050

Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. Sleep State Switching. Neuron. 2010;68(6):1023-1042. doi:10.1016/j.neuron.2010.11.032

Gallopin T, Fort P, Eggermann E, et al. Identification of sleep-promoting neurons in vitro. Nature. 2000;404(6781):992-995. doi:10.1038/35010109

Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of Sleep and Wakefulness. Physiol Rev. 2012;92(3):1087-1187. doi:10.1152/physrev.00032.2011

Peplow M. Structure: The anatomy of sleep. Nature. 2013;497(7450):S2-S3. doi:10.1038/497S2a

Scammell TE, Arrigoni E, Lipton JO. Neural Circuitry of Wakefulness and Sleep. Neuron. 2017;93(4):747-765. doi:10.1016/j.neuron.2017.01.014

Strecker RE, Morairty S, Thakkar MM, et al. Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav Brain Res. 2000;115(2):183-204. doi:10.1016/S0166-4328(00)00258-8

Luppi P-H, Aston-Jones G, Akaoka H, Chouvet G, Jouvet M. Afferent projections to the rat locus coeruleus demonstrated by retrograde and anterograde tracing with cholera-toxin B subunit and Phaseolus vulgaris leucoagglutinin. Neuroscience. 1995;65(1):119-160. doi:10.1016/0306-4522(94)00481-J

Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci. 2005;8(4):476-483. doi:10.1038/nn1419

Carter ME, Yizhar O, Chikahisa S, et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 2010;13(12):1526-1533. doi:10.1038/nn.2682

Murray NM, Buchanan GF, Richerson GB. Insomnia Caused by Serotonin Depletion is Due to Hypothermia. Sleep. 2015;38(12):1985-1993. doi:10.5665/sleep.5256

Ito H, Yanase M, Yamashita A, et al. Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol Brain. 2013;6(1):59. doi:10.1186/1756-6606-6-59

Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM. Dopaminergic Role in Stimulant-Induced Wakefulness. J Neurosci. 2001;21(5):1787-1794. doi:10.1523/JNEUROSCI.21-05-01787.2001

Parmentier R, Zhao Y, Perier M, et al. Role of histamine H1-receptor on behavioral states and wake maintenance during deficiency of a brain activating system: A study using a knockout mouse model. Neuropharmacology. 2016;106:20-34. doi:10.1016/j.neuropharm.2015.12.014

Zant JC, Kim T, Prokai L, et al. Cholinergic Neurons in the Basal Forebrain Promote Wakefulness by Actions on Neighboring Non-Cholinergic Neurons: An Opto-Dialysis Study. J Neurosci. 2016;36(6):2057-2067. doi:10.1523/JNEUROSCI.3318-15.2016

Xu M, Chung S, Zhang S, et al. Basal forebrain circuit for sleep-wake control. Nat Neurosci. 2015;18(11):1641-1647. doi:10.1038/nn.4143

Boucetta S, Cisse Y, Mainville L, Morales M, Jones BE. Discharge Profiles across the Sleep-Waking Cycle of Identified Cholinergic, GABAergic, and Glutamatergic Neurons in the Pontomesencephalic Tegmentum of the Rat. J Neurosci. 2014;34(13):4708-4727. doi:10.1523/JNEUROSCI.2617-13.2014

Anaclet C, Pedersen NP, Ferrari LL, et al. Basal forebrain control of wakefulness and cortical rhythms. Nat Commun. 2015;6(1):8744. doi:10.1038/ncomms9744

Wang H-L, Morales M. Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci. 2009;29(2):340-358. doi:10.1111/j.1460-9568.2008.06576.x

Fisher SP, Sugden D. Endogenous Melatonin is Not Obligatory for the Regulation of the Rat Sleep-Wake Cycle. Sleep. 2010;33(6):833-840. doi:10.1093/sleep/33.6.833

de Lecea L, Kilduff TS, Peyron C, et al. The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci. 1998;95(1):322-327. doi:10.1073/pnas.95.1.322

Schöne C, Apergis-Schoute J, Sakurai T, Adamantidis A, Burdakov D. Coreleased Orexin and Glutamate Evoke Nonredundant Spike Outputs and Computations in Histamine Neurons. Cell Rep. 2014;7(3):697-704. doi:10.1016/j.celrep.2014.03.055

Herrera CG, Cadavieco MC, Jego S, Ponomarenko A, Korotkova T, Adamantidis A. Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat Neurosci. 2016;19(2):290-298. doi:10.1038/nn.4209

Venner A, Anaclet C, Broadhurst RY, Saper CB, Fuller PM. A Novel Population of Wake-Promoting GABAergic Neurons in the Ventral Lateral Hypothalamus. Curr Biol. 2016;26(16):2137-2143. doi:10.1016/j.cub.2016.05.078

Murillo-Rodriguez E, Blanco-Centurion C, Gerashchenko D, Salin-Pascual RJ, Shiromani PJ. The diurnal rhythm of adenosine levels in the basal forebrain of young and old rats. Neuroscience. 2004;123(2):361-370. doi:10.1016/j.neuroscience.2003.09.015

Morairty S, Rainnie D, McCarley R, Greene R. Disinhibition of ventrolateral preoptic area sleep-active neurons by adenosine: a new mechanism for sleep promotion. Neuroscience. 2004;123(2):451-457. doi:10.1016/j.neuroscience.2003.08.066

Díaz-Negrillo A. Bases bioquímicas implicadas en la regulación del sueño. 2013;18(1):9.

Borbély AA, Daan S, Wirz-Justice A, Deboer T. The two-process model of sleep regulation: a reappraisal. J Sleep Res. 2016;25(2):131-143. doi:10.1111/jsr.12371

Pietrowsky R, Meyrer R, Kern W, Born J, Fehm H. Effects of diurnal sleep on secretion of cortisol, luteinizing hormone, and growth hormone in man. J Clin Endocrinol Metab. 1994;78(3):683-687. doi:10.1210/jcem.78.3.8126142

Holl RW, Hartman ML, Veldhuis JD, Taylor WM, Thorner MO. Thirty-Second Sampling of Plasma Growth Hormone in Man: Correlation with Sleep Stages*. J Clin Endocrinol Metab. 1991;72(4):854-861. doi:10.1210/jcem-72-4-854

Van Cauter E, Kerkhofs M, Caufriez A, Van Onderbergen A, Thorner MO, Copinschi G. A quantitative estimation of growth hormone secretion in normal man: reproducibility and relation to sleep and time of day. J Clin Endocrinol Metab. 1992;74(6):1441-1450. doi:10.1210/jcem.74.6.1592892

van Liempt S, Vermetten E, Lentjes E, Arends J, Westenberg H. Decreased nocturnal growth hormone secretion and sleep fragmentation in combat-related posttraumatic stress disorder; potential predictors of impaired memory consolidation. Psychoneuroendocrinology. 2011;36(9):1361-1369. doi:10.1016/j.psyneuen.2011.03.009

Gooley JJ, Chamberlain K, Smith KA, et al. Exposure to Room Light before Bedtime Suppresses Melatonin Onset and Shortens Melatonin Duration in Humans. J Clin Endocrinol Metab. 2011;96(3):E463-E472. doi:10.1210/jc.2010-2098

Teclemariam-Mesbah R, Ter Horst GJ, Postema F, Wortel J, Buijs RM. Anatomical demonstration of the suprachiasmatic nucleus–pineal pathway. J Comp Neurol. 1999;406(2):171-182. doi:10.1002/(SICI)1096-9861(19990405)406:2<171::AID-CNE3>3.0.CO;2-U

Sack RL, Brandes RW, Kendall AR, Lewy AJ. Entrainment of Free-Running Circadian Rhythms by Melatonin in Blind People. N Engl J Med. 2000;343(15):1070-1077. doi:10.1056/NEJM200010123431503

Aeschbach D, Lockyer BJ, Dijk D-J, et al. Use of Transdermal Melatonin Delivery to Improve Sleep Maintenance During Daytime. Clin Pharmacol Ther. 2009;86(4):378-382. doi:10.1038/clpt.2009.109

Burgess HJ, Revell VL, Molina TA, Eastman CI. Human Phase Response Curves to Three Days of Daily Melatonin: 0.5 mg Versus 3.0 mg. J Clin Endocrinol Metab. 2010;95(7):3325-3331. doi:10.1210/jc.2009-2590

Wehr TA, Moul DE, Barbato G, et al. Conservation of photoperiod-responsive mechanisms in humans. Am J Physiol-Regul Integr Comp Physiol. 1993;265(4):R846-R857. doi:10.1152/ajpregu.1993.265.4.R846

Scheer FAJL, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci. 2009;106(11):4453-4458. doi:10.1073/pnas.0808180106

Buijs RM, Wortel J, Van Heerikhuize JJ, et al. Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway: Suprachiasmatic adrenal interaction. Eur J Neurosci. 1999;11(5):1535-1544. doi:10.1046/j.1460-9568.1999.00575.x

Memar P, Faradji F. A Novel Multi-Class EEG-Based Sleep Stage Classification System. IEEE Trans Neural Syst Rehabil Eng. 2018;26(1):84-95. doi:10.1109/TNSRE.2017.2776149

Malik J, Lo Y-L, Wu H. Sleep-wake classification via quantifying heart rate variability by convolutional neural network. Physiol Meas. 2018;39(8):085004. doi:10.1088/1361-6579/aad5a9

Varga B, Gergely A, Galambos Ã, Kis A. Heart Rate and Heart Rate Variability during Sleep in Family Dogs (Canis familiaris). Moderate Effect of Pre-Sleep Emotions. Animals. 2018;8(7):107. doi:10.3390/ani8070107

Patel AK, Reddy V, Araujo JF. Physiology, Sleep Stages. In: StatPearls. StatPearls Publishing; 2020. Accessed January 24, 2021. http://www.ncbi.nlm.nih.gov/books/NBK526132/

della Monica C, Johnsen S, Atzori G, Groeger JA, Dijk D-J. Rapid Eye Movement Sleep, Sleep Continuity and Slow Wave Sleep as Predictors of Cognition, Mood, and Subjective Sleep Quality in Healthy Men and Women, Aged 20–84 Years. Front Psychiatry. 2018;9:255. doi:10.3389/fpsyt.2018.00255

Ferri R, Rundo F, Silvani A, et al. REM Sleep EEG Instability in REM Sleep Behavior Disorder and Clonazepam Effects. Sleep. 2017;40(8). doi:10.1093/sleep/zsx080

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2021 Juan Antonio Lugo Machado, Martha Lucía Gutiérrez-Pérez, Dalia Iveth Yocupicio-Hernández, María Paula Huepo-Pérez

Downloads

Download data is not yet available.